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Abstract

Measuring fractal dimensions has become a common practice for describing structural properties of porous media.

Depending on the object of interest, different features of the structure can be measured: solid matrix, pores, and the interface

between them. However, when measuring the fractal dimension of all these features, the question arises whether these

dimensions are independent from each other or whether they can be related to an underlying property of the structure or image,

respectively.

For a variety of porous media we measured the fractal dimension of the matrix, the pore space, and the interface between

them simultaneously using the box counting method. Analyzed images were obtained from soil thin sections and a void system

in a clayey soil.

Measured fractal dimensions were compared with fractal dimensions estimated by the pore-solid fractal (PSF) model, which

derives the fractal properties of the matrix and the pore space completely as a function of the porosity, the size of the initiator

and the fractal dimension of the interface. Measured results agree well with values obtained from the PSF model. A clear

relationship between the fractal dimensions of the two phases (solid matrix and pore space) of a porous medium and their

interface was observed. For all images the smallest fractal dimension was found for the interface between matrix and pores.

Values for the fractal dimension of the two phases were between those for the interface and the Euclidian space with the phase

with the lower mass fraction always having the smaller dimension. Porosity was found to act as weighing factor linking the

dimension of the phases to those of the interface and Euclidian space. Model results also predict a dependency of the dimension

of the phases on the spatial resolution of the analyzed image. For images having a high resolution (compared to the size of the

initiator) phase dimensions are expected to be greater than for images having a low resolution.
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1. Introduction

Deriving the physical properties of a porous

medium (e.g., hydraulic conductivity, thermal con-

ductivity, water retention curve) from parameters

describing the structure of the medium (e.g., porosity,

pore size distribution, specific surface area) is an

ongoing challenge for scientists. As natural porous

media commonly have a highly complex structure,

such calculations cannot usually be done directly. A

more common approach is to generate artificial

structures, which allow calculating their physical

properties. To allow such calculations these artificial

structures have to be simplifications of the natural

media they aim to represent. However, in order to

yield representative results, the key structural proper-

ties of a natural porous medium have to be reproduced

by the artificial structure. Therefore, the question

arises how to generate an artificial porous medium

fulfilling both of the above requirements. Soils are

among the most prominent examples of naturally

occurring porous media. Thus, in this study we will

focus on soil structures as typical representatives of

porous media.

A variety of approaches have been introduced to

generate artificial porous structures. These approaches

include the generation of regular pore networks (e.g.,

Berkowitz and Ewing, 1998), networks developed

according to morphologically determined parameters

of a soil (Vogel, 2000), the simulation of sedimenta-

tion processes (Dutta and Tarafdar, 2003), and the use

of fractal models. For the latter, a minimum require-

ment for the applicability of the model is that the

natural porous medium exhibits a self-similar scaling,

described by its fractal dimension. This implies that

the fractal properties measured for a natural porous

medium can be appropriately reproduced by the

fractal model.

To verify the assumption of a porous medium

having a self-similar scaling behavior, fractal dimen-

sions of various features have been determined

experimentally. Measured features include particle

size (measured with classical soil physics methods

like sieving or sedimentation), size of soil aggregates

(Turcotte, 1986; Young and Crawford, 1991; Perfect

et al., 1993), and pore size, the latter derived from

water retention curves (Ahl and Niemeyer, 1989;

Perfect et al., 1996; Niemeyer and Machulla, 1999) or
mercury intrusion curves (Bartoli et al., 1991; Bartoli

et al., 1999). The inner surface of a porous medium is

commonly determined from digital images of soil thin

sections or soil blocks (Anderson et al., 1996; Bird et

al., 1996; Pachepsky et al., 1996; Gimenez et al.,

1997; Bartoli et al., 1999; Dathe et al., 2001).

In this study we use image analysis to quantify the

self-similarity or the fractal dimension of the structure,

respectively. Image analysis is a method for directly

obtaining the structure of a porous medium, which is

beyond a simple observation. In previous work, Dathe

et al. (2001) measured the fractal dimension of the

interface between soil particles and the pore space.

They used images obtained from thin sections with a

SEM (scanning electron microscope) using different

magnifications or resolutions, respectively. Other

authors investigated distinct features. Bartoli et al.

(1991) measured the fractal dimension of soil matrix

and pore space. To obtain images, they placed thin

sections as negatives in a photograph chamber and

used SEM and TEM (transmission electron micro-

scopy) for high resolutions. Using black and white

photographs from soil thin sections, Anderson et al.

(1996, 2000) measured the mass dimension of the

solid and the pore phase, respectively, and in addition

the spectral dimension. Gimenez et al. (1998)

measured the mass fractal dimension of the pore

phase and the fractal dimension of the pore surface.

Their images were obtained with a lens from polished

blocks.

The question arises regarding which feature (e.g.,

grain or pore size distribution, mass of the pore phase,

mass of the solid matrix phase, interface between

pores and matrix) can be considered as representative

for the porous medium as a whole. This also includes

the question whether measuring the fractal dimension

of one feature is sufficient for describing the fractal

behavior of the entire structure.

Besides the challenge of evaluating the fractal

properties of a porous medium experimentally, pre-

dictions of the fractal model also depend on the

specific modeling approach. Most of the fractal

models used describe a porous medium as a set of

one fractal phase (matrix or pore) and its comple-

mentary non-fractal phase. In an iterative process, the

fractal phase of an initial structure (initiator) is refined

using a deterministic or stochastic pattern. This

approach is described by the size of the initiator, the
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ratio between both phases in the initiator, and a

scaling rule, which describes the number of subpat-

terns into which the initial structure is divided. Being

the basic model for this process, the well-known

Sierpinski carpet (in two dimensions) or Menger

sponge (in three dimensions) have commonly been

used in several variations (Tyler and Wheatcraft,

1990; Rieu and Sposito, 1991; Crawford et al.,

1993; Perrier et al., 1999; Rappoldt and Crawford,

1999; Lehmann et al., 2003). Other authors (Sukop et

al., 2001) used alternative algorithms to create fractal

porous media.

The drawback of these approaches is that the mass

of the fractal phase (i.e., the phase, which is divided

into smaller and smaller objects) approaches zero in

case of an infinite number of iterations (Crawford et

al., 1993; Crawford and Matsui, 1996; Perrier et al.,

1999; Anderson et al., 2000). Therefore, most of these

models deal with prefractals, wherein the iteration

process is stopped at a point where the size of the

smallest pores or grains is assumed to be reached. To

overcome this problem, Perrier et al. (1999) intro-

duced a generalized dpore-solid fractalT (PSF) model,

which assumes a generated porous medium to contain

a third undefined phase in addition to the pore and the

solid matrix phase. The iterative refinement process

affects only this undefined phase, whereas the pore

and matrix phases, once defined, are not subject to

any further refinement. A relation can be derived from

the PSF model between the scaling behavior of the

mass of the pores, the mass of the solid matrix, and

the interface between them.

An explicit comparison between the model pre-

dictions and measurements of the fractal geometry of
Fig. 1. Binary images as they have been used for the measurements of

respectively, in black. The images present a soil structure obtained from th

size of the images shown is (a) 30 Am, (b) 266 Am, (c) 890 Am, and (d)
natural porous media has not been done so far. Thus,

the aim of the present study is to prove whether the

dimensions of natural porous media can be described

with the PSF model. Furthermore, we want to

investigate whether the fractal dimensions of solid

mass and pore space are explicitly related. To do so,

fractal dimensions of the pore phase, the matrix phase,

and the interface between them are measured simulta-

neously by image analysis. Measured results are

compared with predictions of the PSF model to

evaluate its applicability and to establish a general

relation between the different parameters describing

the fractal properties of porous media.
2. Materials and methods

2.1. Samples and sample preparation

Images of two different soil structures were

chosen for investigation. One of the soil structures

(Luvisol developed on Loess, county of Gfttingen,
Germany) was analyzed on the pore scale. Images for

three different magnifications or resolutions, respec-

tively, were obtained on the Am scale from polished

surfaces of soil thin sections using a field emission

SEM (Fig. 1a–c). The signal used for detection was

composed of 3/4 backscattered and 1/4 secondary

electrons at an electron acceleration energy of 18

keV, yielding a depth of focus of about 1 Am.

Regions for the investigated images were selected

arbitrary, from one thin section for image SEM 1, and

from another thin section for images SEM 2 and 3.

The thin sections were oriented horizontally in
the fractal dimension. Objects are shown in white; pores or voids,

in sections using SEM (a–c) and a soil void system (d). The original

560 mm.
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relation to the block they had been cut off. Dathe et

al. (2001) described in detail the procedure of

preparing the samples and obtaining the images.

The second soil structure (Pelosol containing about

80% clay, Darling Basin, Australia) represents a soil

void system, which can be observed on a larger scale

(~10 cm). Changing water content causes the

swelling and shrinking of the clay minerals, yielding

the development of voids (Fig. 1d).

SEM images were obtained as grey scale images,

and Fig. 1d shows a digital scan of a top view photo

of the soil surface taken by an analog camera. All

images were stored with 10242 pixel resolution,

whereas their original size increases from a side

length of 30 Am to 560 mm (Table 1).

2.1.1. Image analysis

Image analysis was performed using a Zeiss

KS400 system (Zeiss Vision, Jena, Germany) apply-

ing user-defined macros (Eins, 1998). In order to

obtain a binary image, the original image had to be
Table 1

Comparison between calculated and measured fractal dimensions for the

Measurement

Image
Resolution
(µm/pixel)

Range
box size
(pixel)

SEM 1 0.03 2 - 128

SEM 2 0.26 2 - 64

SEM 3 0.87 2 - 64

Voids 547.30 2 - 32

Dp

1.863
(0.007)

1.638
(0.022)

1.707
(0.058)

1.530
(0.017)

Dm

1.845
(0.010)

1.947
(0.003)

1.943
(0.007)

1.921
(0.017)

Mo

Porosit

0.513

0.230

0.249

0.264

0.307

0.227

0.238

‡

‡

‡

The model input parameter for the initiator equals the upper range of box s

text.
thresholded. Whereas the SEM images were obtained

as 8-bit images (256 grey values for each pixel), the

scan of the photo of the soil void system was obtained

as 24-bit image, i.e., 8 bits for every color channel.

For the SEM images, we took advantage of the clear

contrast between the dark pores and the bright matrix,

assuming a normal distribution of the related grey

values for the pores and the matrix, respectively. The

scan of the soil void system showed two maxima for

the grey values obtained as the average of the three-

color channels. The image was segmented at the

minimum of the grey value distribution between the

maxima for the voids and the matrix.

2.1.2. Measurement of fractal dimensions

We used the box counting method to measure

fractal dimensions, or more specifically, fractal

capacity dimensions of the pore and the matrix phase.

These dimensions can be described by the ratio

between the logarithm of an iteration rule and the

logarithm of the scale increment (Mandelbrot, 1983).
measured and the corrected (marked with z ) porosity

Model Results

del Input

y D

1.368
(0.042)

1.387
(0.079)

1.526
(0.110)

1.112
(0.129)

Method (A)

Dp

1.859
(0.017)

1.673
(0.023)

1.688
(0.023)

1.740
(0.014)

1.764
(0.014)

1.557
(0.044)

1.570
(0.044)

Dm

1.848
(0.018)

1.936
(0.009)

1.930
(0.009)

1.932
(0.007)

1.919
(0.008)

1.918
(0.015)

1.914
(0.016)

Method (B)

Dp

1.851
(0.011)

1.674
(0.022)

1.688
(0.020)

1.741
(0.031)

1.764
(0.028)

1.557
(0.030)

1.569
(0.030)

Dm

1.840
(0.012)

1.932
(0.006)

1.925
(0.005)

1.929
(0.010)

1.916
(0.011)

1.909
(0.005)

1.904
(0.006)

‡ ‡ ‡ ‡

‡ ‡ ‡ ‡

‡ ‡ ‡ ‡

izes. Values for the errors are given in brackets and explained in the



Fig. 2. Concept of the pore-solid fractal model for the first three

iterations. The initiator is divided into matrix (white), pores (black)

and an undefined set shown in grey. For each iteration step only the

grey subregions are replaced by the initiator. Modified from Perrier

et al. (1999).
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The measurement method takes advantage of the

assumed self-similar scaling behavior, which allows

applying the equation

N rð Þ~r�D: ð1Þ

The power law describes the number of boxes N of

a specific feature as a function of their side length r

with an exponent D. Thus, whenever measured box

counts can be described by Eq. (1) using a non-integer

value for D, the feature is considered to be a fractal

with D as the fractal dimension (see, e.g., Baveye and

Boast, 1998 for a review on the general validity of this

assumption).

Measurements were performed starting with a box

size of two pixel, and increasing the box size by powers

of 2, until the size of the image was reached at

210=1024. This was done separately for the matrix as

well as for the pore space or background, respectively.

For the estimation of the fractal dimension, the data

were used up to the box size where no further structure

information could be obtained. I.e., the generator L of

the fractal set (see below) was set to the maximum box

size, for which the boxes covering a specific feature did

not cover the entire image. The fractal dimension was

estimated separately for the matrix and the pore space

as the slope of a log–log plot according to

logN rð Þ ¼ � Dlogr þ c: ð2Þ

For estimating the fractal dimension of the pore–

matrix interface, the number of boxes covering the

interface (Ns) was taken as the number of boxes

covering pores and matrix (Np and Nm) simultane-

ously as

Ns rð Þ ¼ Nm rð Þ þ Np rð Þ � Nmax rð Þ ð3Þ

with Nmax as the total number of boxes needed to

cover the entire image.

2.2. Model description

The model used within this study is the dpore-solid
fractalT (PSF) model as introduced by Perrier et al.

(1999). To our knowledge, this is the only fractal

model approach which preserves a finite volume for

both phases of a soil structure. The general approach

of the PSF model is dividing a given region with
linear size L into subsections with the linear size L/n.

A generator assigns one of the following phases to

each subsection: pore phase, matrix phase, or a third

undefined phase, with each phase having a predefined

proportion of the entire region. In a subsequent step,

the third undefined phase of the initiator is again

divided into the three different phases using the same

proportions. In contrast, the pore and the matrix phase

are kept as determined by the previous steps. An

iterative repetition of these steps then creates a

structure with pores and matrix solids of various sizes

(Fig. 2).

For an infinite number of iterations, the mass of

the undefined phase approaches 0, but the mass of

the pores and the mass of the matrix each maintain

a finite value. The porosity / of the structure finally

approaches /=x/(x+y), with x and y as the fraction

of the pore phase and the matrix phase, respectively,

within the initial generator (Perrier et al., 1999). The

fact that for the PSF model, pore phase and matrix

phase have a finite (non-zero) mass even for an

infinite number of iterations marks an important

difference from fractal pore models assuming two

phases only. For the latter models, one phase – either

the pore phase (pore mass fractal) or the solid

matrix (solid mass fractal) – disappears in the case of

an infinite number of iterations, with the mass of

this phase thus approaching 0. As a consequence,

the number of iterations has to be limited for

creating a porous structure containing pores and

a solid matrix. Therefore, the properties of the

resulting structure are functions of the number of

iterations.

For the PSF model the fractal dimension D of the

porous medium is given by

D ¼ d þ log 1� x� yð Þ
logn

ð4Þ
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with d as the Euclidian dimension of the structure.

The proportions of the pore phase and the matrix

phase within the generator are given by x and y,

respectively. Note that the proportion z of the

undefined phase is given by z=1�x�y.

When calculating the fractal properties of the

pore mass, the solid matrix mass, and the interface

between them, it has been shown that only the

interface exhibits fractal scaling with the fractal

dimension D, whereas the pore mass and the solid

mass do not scale with a fractal dimension (Perrier

et al., 1999). However, the PSF model allows

calculation of the results of analyzing the mass of

the pores and the solid matrix by the box counting

method as:

Np rð Þ ¼ x

xþ y
Ldr�d þ y

xþ y
LDr�D ð5aÞ

Nm rð Þ ¼ y

xþ y
Ldr�d þ x

xþ y
LDr�D ð5bÞ

with Np and Nm as the number of box counts

using boxes with linear size r. Using x/(x+y)=/
and y/(x+y)=(1�/) reduces the number of para-

meters determining the box counts to four: the

Euclidian dimension d, the fractal dimension D of

the porous medium, the porosity /, and the size of

the initiator L.

To compare the results of the PSF model with

measured results for natural porous media analyzed by

digital image analysis, Eqs. (5a) and (5b) were used

with parameter values taken from the image analysis

procedure. Here we assumed that according to the

PSF model the fractal dimension D is given by the

fractal dimension measured for the interface between

pore phase and matrix phase for each analyzed porous

medium. Porosities / were calculated using the

distribution of black and white pixels in the binary

version of the digital images. It was assumed that the

ratio /* between the black pixels (representing the

pore space) and the total pixels (black and white) is

underestimating the porosity of porous media with

small porosities. This is caused by the binarization

process, which is using the grey scale of each pixel to

determine the binary value. Thus, porous structures

smaller than the size of a pixel are converted into
either pore space or matrix. Assuming a fractal scaling

of the porous medium, the mass fraction of these

subpixel scale structures is given by the porosity of

the entire medium. As a consequence, the grey

scale of these pixels is dominated by the phase

with the greater mass fraction. I.e., for media

having a small porosity all these bgreyQ pixels

converted into white pixels, causing the under-

estimation of the porosity. To compensate this effect

and to get an estimate of the real porosity of the

porous medium, the PSF model was used to

calculate the correction term. Considering a porous

structure following the PSF model the number of

black, white and grey pixels (Nb, Nw, and Ng) can

be calculated using Eqs. (6a)–(6c) for a box size of

1 pixel:

Nb ¼ Np r ¼ 1ð Þ � Ns r ¼ 1ð Þ ð6aÞ

Nw ¼ Nm r ¼ 1ð Þ � Ns r ¼ 1ð Þ ð6bÞ

Ng ¼ Ns r ¼ 1ð Þ: ð6cÞ

When assuming a small porosity, the binarization

process is transferring all grey pixels into white pixels

and, thus, the number of black pixels in the binary

image (Nb*) is:

Nb
4 ¼ Nb ¼ Np � Np þ Nm � Ldr�d

� �

¼ Ldr�d � y

xþ y
Ldr�d þ x

xþ y
LDr�D

� �

¼ / Ldr�d � LDr�D
� �

Therefore, the real porosity / is linked to the

measured porosity /*=Nb*/(L
dr�d) by

/ ¼ /T
1� L D�dð Þr� D�dð Þ : ð7Þ

The size L of the initiator was determined by the

largest box size, which allowed resolving any

properties of the imaged structure (i.e., the number

of box counts for a specific phase is not covering the

entire image). For the digital images analyzed within

this study values for /* vary between 0.227 and

0.513. We assumed that for the image SEM 1 the

measured porosity of 0.513 is great enough not to be

affected significantly by the binarization process. For

the other three images having measured porosities
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between 0.227 and 0.264 we used Eq. (7) to estimate

the real porosity.

Thus, for an image of linear size N, the number

of box counts according to the PSF model is given

by

Np rð Þ ¼ N

L

� �d

/Ldr�d þ 1� /ð ÞLDr�D
� �

ð8aÞ

Nm rð Þ ¼ N

L

� �d

1� /ð ÞLdr�d þ /LDr�D
� �

: ð8bÞ

Using Eqs. (8a) and (8b) box counts were

calculated for the box sizes used for the image

analysis. The fractal dimension of the porous structure

was assumed to be given by the dimension of the

interface between pores and matrix, and values

measured by image analysis were taken as input for

the model.

Model results were analyzed using two different

methods:
-0.5 0.0 0.5 1.0 1.5

Box size (log10 µm)
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Box size (log10 µm)
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c

log (N_m) = -1.936x + 5.893

R2 = 1

log (N_m*) = -1.947x + 5.294

R2 = 1

Fig. 3. Box counts as measured with image analysis and estimated

according to the pore-solid fractal model for image SEM 2. The

slope of the linear regression yields the fractal dimensions using

measured box counts and box counts estimated from the model with

method (A). Shown are (a) number of boxes for the interface as

determined from the measured counts using Eq. (3), (b) estimated

(N_p) and measured (N_p*) number of boxes for the pore space and

(c) estimated (N_m) and measured (N_m*) number of boxes for the

matrix space.
(A) Analogous to the image analysis method, results

were plotted on a log–log scale and fitted by a

power law to obtain the bfractalQ dimension for

the mass of the pore phase and the solid matrix

phase, respectively.

(B) bFractalQ dimensions D were calculated by

determining the derivatives of Eqs. (8a) and

(8b) on a log–log scale using x=L/r:

Dp xð Þ ¼ BlnNp

Blnx

¼ Dþ d � Dð Þ /

/ þ 1� /ð Þx D�dð Þ ð9aÞ

Dm xð Þ ¼ BlnNm

Blnx

¼ Dþ d � Dð Þ 1� /

1� /ð Þ þ /x D�dð Þ : ð9bÞ

Only if pore and matrix phase are fractals, Dp and

Dm would not depend on x. Thus, performing method

(B), an average D was calculated to compare the

model derived D-values with those from the measure-

ments. As the box sizes used for the measurements
were equally distributed on the log scale, we

calculated for each image the arithmetic mean of

D(x) with x-values given by the initiator sizes
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determined for each image and the box sizes used for

the measurements.
3. Results

3.1. Image analysis

Measured box counts for the interface calculated

using Eq. (3) as well as box counts for the pore and

the matrix phase are shown for image SEM 2 as an

example (Fig. 3). According to Eq. (2), for all images

the fractal dimensions were obtained as the slope of

the log–log plot of measured box counts as a function

of box size. Measured fractal dimensions D varied

between 1.112 for the interface of the soil void system

to 1.947 for the solid mass of the image SEM 2

(Table 1). For all images, the interface had the

smallest dimension, followed by the dimension of

the pore phase, with the dimension of the matrix

phase having the highest value. An exception was

image SEM 1, for which the dimension of the pore

phase was greater than the dimension of the matrix

phase. For this image the pore phase had a greater

mass than the matrix phase, i.e., the porosity was

greater than 0.5. Thus, for all images the phase with

the greater mass also had a greater fractal dimension

than its corresponding phase. Measured fractal

dimensions of the pore–matrix interfaces for images

SEM 1, SEM 2, and SEM 3 yield D=1.368, D=1.387,

and D=1.526, which are greater than the interface

dimension for image Voids (D=1.112). Values for the

measured porosity ranged from 0.227% for the image

Voids to 0.513 for SEM 1. For small porosities, the

differences between fractal dimensions of pore and

matrix phase were larger than for porosities close to

0.5. As a measurement for the goodness of fit, the

standard error of the slope, which is the standard error

of each linear regression divided by the square root of

the sum of squares of box sizes used, is given for all

images. Values for this analysis are taken as loga-

rithms, and the procedure does not take into account

that for each image data obtained for a given box size

are not independent from those obtained for other box

sizes. Considering these dependencies would lead to

enlarged standard errors (Reeve, 1992). Standard

errors for the phase with the greater mass were lower

than for the complementary phase of the same image.
Standard errors of the fractal dimension of the

interface were greater than those of the pore phase

and the matrix phase, respectively.

3.2. PSF model

As for the measured values, box counts calculated

according to the PSF model using method (A) are

shown for SEM 2 as an example (Fig. 3b and c).

Values for the model parameters obtained from the

measurements are shown in Table 1 as well as the

fractal dimensions estimated with the PSF model. As

described above, results for method (A) were deter-

mined by fitting the box counts calculated using Eqs.

(8a) and (8b), and for method (B) results were

calculated using Eqs. (9a) and (9b). The size of the

initiator L used in the PSF model is given by the

maximum of the box size range for each image. The

results of the two methods were nearly identical for all

images, with greatest differences (Dm of image Voids)

being within the given error range. For each image the

model-based dimensions showed the same sequence

as observed for the measurement: the phase with the

smaller mass had a smaller dimension than its

complementary phase. Naturally, the dimensions of

both phases were larger than the dimension of the

interface and smaller than the Euclidian dimension of

the structure.

3.3. Comparison of results

Comparing the model results with the results from

image analysis showed generally a good agreement

between model derived dimensions and measured

dimensions of the pore and matrix phase. For Dp,

differences between results from image analysis and

from the model did not exceed 0.057, whereas for Dm

these differences were smaller than 0.027 (see results

for SEM 3, Table 1). For SEM 1, the results of

method (A) were closer to the measured results. For

SEM 2, SEM 3, and the Voids image, results

obtained with porosities corrected using Eq. (7)

showed a worse agreement with the measurements

than the results obtained with the measured porosities.

For most cases, model results tended slightly to

overestimate the dimension of the smaller phase,

whereas the dimension of the larger phase was

underestimated by the model. An exception was
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method (B) for SEM 1, where the dimension of the

smaller phase was underestimated. Taking the stand-

ard error of the slope as a measurement for the

goodness of fit, the fractal dimensions measured with

image analysis were more accurate than the fractal
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Fig. 4. Sensitivity of model results using methods (A) and (B).

Shown are Dp and Dm for (a) increasing porosities /, (b)

increasing size of the initiator L, and (c) increasing surface fractal

dimension D. When fixed, values are set to /=0.31, L=64, D=1.35,

which are approximately the means of the measured values shown

in Table 1.
dimensions determined according method (A). The

only exception was the matrix of the Voids image:

for this image the accuracy of the model fit exceeded

the measurement. Error values given for method (B)

are estimated from the errors of each Dp,m(x) as

caused by measurement errors for D and / (for /
errors we used the difference between / and /*if

available; otherwise we assumed an error of 10%).

As the error ranges were determined differently, a

comparison of errors between measurement and

method (A), and method (B) is difficult. Never-

theless, error ranges are similar for both methods and

for the measurement, with errors always being

greater for the dimension of the phase with the

lower mass fraction.

3.4. Sensitivity of model results

To investigate the model parameters’ influence

on the mass fractal dimension of the pore and the

matrix phase (Dp and Dm), a sensitivity analysis

was performed for the porosity /, the size of the

initiator L, and the surface fractal dimension D. An

artificial structure (size 10242) was analyzed with

values of /=0.31, L=64, and D=1.35 using mean

values from Table 1. Results of this analysis which

was performed for both methods, (A) and (B),

show that the sensitivity of Dp and Dm is highest

towards variations of porosity (see Fig. 4a). The

porosity determines the difference between Dp and

Dm. For a porosity of /=0.5 the dimensions are

equal, and for /N0.5 results are symmetrical to

those for inverted phases and porosity 1�/. For

/Y0 or /Y1, respectively, the dimension of the

disappearing feature approaches the dimension of

the interface. Variations of the size of the initiator L

also have a high influence on Dp and Dm,

especially for relatively small L which includes

the sizes we obtained (see Table 1 and Fig. 4b).

Generally, the dimension of the phase with the

larger mass shows a smaller sensitivity towards

changes of / and L. An increase of D yields

higher values for Dp and Dm until they reach the

Euclidian dimension of 2, whereas their difference

decreases for greater D (Fig. 4c). Differences

between method (A) and (B) are most pronounced

for large sizes of the initiator and small surface

fractal dimensions.
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4. Discussion

4.1. Experimental observations

For all features (pore phase, matrix phase, pore–

matrix interface) of the investigated images, the

measured box counts could be successfully fitted by

a power law with a noninteger exponent. This

indicates a fractal scaling behavior of each measured

feature. However, a comparison of the fractal

dimensions measured for the different features of a

porous structure demonstrates that the scaling behav-

ior of each feature was different. This experimental

finding is in agreement with the work of other

authors (Crawford and Matsui, 1996; Anderson et

al., 2000) who measured greater fractal dimensions

for the solid phase than for the pore phase. Thus,

measuring the dimension of an arbitrarily chosen

feature does not provide sufficient information on the

fractal properties of a structure. For each image the

measured dimensions had the same sequence (inter-

faceb smaller phaseb larger phasebEuclidian space),

which suggest the existence of a relation between the

dimension of the different features, although no

obvious relation can be extracted from the measure-

ment itself.

4.2. Model applicability

To establish a relation between the fractal

dimensions of different features of a porous medium

and to evaluate the applicability of the PSF model,

measured data were compared to model results

showing that the findings of the measurements could

be reproduced by the model. For all images the

model-based fractal dimensions were in good agree-

ment with the measured dimensions (see Fig. 3b and

c for an example). The model was reproducing the

measured sequence of the fractal dimensions, and

differences between the values of each measured and

model based fractal dimension were within or at

least close to the standard errors. The fact that the

differences between results of the two methods used

to analyze the model were relatively small suggests

that the model was indeed reproducing the fractal

properties of the investigated porous structure and

that the good agreement between the model and the

measurements was not biased by an arbitrarily
chosen analysis method. The good agreement

between model and measurement was not granted

a priori, as the model considers the pore and the

matrix phase not to be fractals. However, analyzing

the box counts calculated from the model indicated

that those box counts could be nicely fitted by a

power law, with errors only slightly larger than those

obtained when fitting the measured box counts.

Hence, using the same criteria as applied to the

measured box counts would justify the use of the

term bfractalQ when describing these features. Within

the accuracy of the measurements presented here it

was not possible to distinguish between the phases

being fractals or having a mixed, fractal and

Euclidian, behavior as predicted by the model. In

contrast, the model assumed the interface being a

fractal. This would suggest that the box counts for

the interface were exactly determined by a power

law. Thus, the fact that the measured box counts for

the interface suggest a slightly nonlinear dependency

on the box size (on a log–log scale, see Fig. 3a) and

that for all images errors for fitting the box counts

for the interface were larger than the errors obtained

for the two phases indicates a discrepancy between

model assumptions and measured properties of the

porous structures. From the PSF model one would

also expect the same values for the fractal dimension

of the interface, and the porosity for all three SEM

images, as they were obtained from the same soil

structure. The apparently observed differences

between these values may be attributed to the

heterogeneity of the soil structure (not being a

mathematically generated fractal but exhibiting

fractal behavior in a statistical manner only), but

may also indicate a discrepancy between the PSF

model and natural porous media. Another reason

might be the surface of the single grains being very

smooth, thus, determining a lower limit for self-

similarity of the investigated structure (Dathe et al.,

2001).

4.3. Influence of porosity on fractal properties of

porous media

The good agreement between measured and model

based fractal dimensions suggests that the model

defines a structure equivalent to the porous structures

investigated here. In the model, the box counts or
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fractal dimensions, respectively, were composed by

two components: an Euclidian term, and a fractal term

given by the fractal dimension of the interface (see

Eqs. (8a), (8b), (9a) and (9b)). For the pore phase the

Euclidian component is weighted by /, and the fractal

component is weighted by (1�/). For the matrix

phase the weighting factors are exchanged. This led

directly to the observed sequence for the fractal

dimensions with both phase dimensions being

between the dimension of the interface and the

Euclidian dimension and the smaller phase having

the smaller dimension. This porosity dependence also

indicates that the asymptotic behavior for /Y0 or

/Y1 is different for the two phases. The closer the

smaller phase gets to a fractal the less this assumption

holds for the larger phase. They cannot be assumed to

be fractals simultaneously, which again indicates that

measuring the fractal properties of one phase only

does not allow to make any predictions on its

complementary phase.

4.4. Importance of measurement process

Besides the porosity, model predictions for the

phase dimensions also depend on the size of the

initiator L, as well as on the box sizes used for the

image analysis r, or on their combination, the variable

x=L/r, respectively. Theoretically, x-values range

from 1 to l. Using Eqs. (9a) and (9b) this determines

the range of possible values for Dp and Dm to:

D(1�/)+d/bDpbd and d(1�/)+D/bDmbd. This is

in accordance to theoretical considerations for the

PSF model (Bird and Perrier, 2003). For comparing

model predictions obtained for method (B) with

measured results it was necessary to calculate the

average dimension, which is representative for the x

range corresponding to the measurements, and thus,

the resulting dimension strongly depends on the

resolution of the measuring procedure. For a given

resolution, results depend on the size of the initiator

and the sensitivity is highest for small values of L

including the range of values observed within this

study. This also indicates that the uncertainty asso-

ciated with the determination of the initiator size has

a high impact on the outcome of the model. We

decided to determine the initiator size from the

measured box counts, trying to apply a consistent

procedure to all images. The uncertainty of this
procedure is given by the factor of 2 between two

consecutive box sizes.

For a given initiator size the range of possible x-

values depends on the image resolution. The finer the

resolution the larger is the range of x-values (note that

x~(1/r)). As Dp,m(x) increases monotonically with x,

a larger x range will lead to larger estimates for the

dimension of the pore and matrix phase with both

dimensions eventually approaching d. This would

imply that the self-similarity of the porous structure

can be extrapolated to smaller length scale ad infinum,

which ignores that there is a limit for this self-

similarity (see Section 4.2). In contrast to a high

resolution, a coarse resolution of the analyzed image

narrows the range of x-values, bringing the estimates

for the pore phase and the matrix phase dimension

closer to D(1�/)+d/ and d(1�/)+D/, respectively.

A dependency of measured fractal dimensions on the

observation scale has been reported in the literature

(Dathe and Baveye, 2003), but the dependency of x

on L and r complicates the comparison of the result of

different studies.
5. Conclusions

Measuring fractal dimensions of a porous medium

yields different results depending on the measured

feature (pore phase, matrix phase, pore–matrix inter-

face). These findings could be reproduced well by the

PSF model suggesting that only the pore–matrix

interface is a fractal, whereas the pore and the matrix

phase are composed by a fractal component defined

by the dimension of the interface and an Euclidian

component. The porosity of a medium was found to

be the weighting factor for these components.

Although not being a fractal, pore and matrix phase

can be well approximated by a power law with the

bfractalQ dimension being a function of the dimension

of the interface, the porosity, the size of the initiator,

and the spatial resolution of the measurement.
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